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Abstract.  Within the framework of the pair potential approximation and the shell modelincluding

the Jahn-Teller contribution to the crystal energy we have studied the elastic propertigSotLa

The strong anisotropic correlation between the lattice deformatignande,, and the internal
displacements of the accompanying sublattices within tha®kéayers are shown to be responsible

for the giant anisotropy of the elastic moduli in the-plane. We have predicted the softening of
several elastic moduli in the orthorhombic phase region near the pressure-induced structural phase
transition. But we have not observed the softening ©fc12, andcgg in the tetragonal phase region

that was measured near the temperature-induced structural phase transition.

1. Introduction

The elastic properties of La,Me,CuQ, (Me = Sr, Ba) as well as those of the parent material
La,CuQy, have attracted considerable interest during the last few years. Nevertheless, until now
there have been some contradictions in the available experimental and theoretical results. The
experimental data obtained in [1, 2] for a single crystal ofCa0, showed only a very small
anisotropy of the elastic properties in theplane (see table 1). On the other hand, the elastic
moduli measured in [3] for a single crystal of {GuO, as well as the results of theoretical
calculations for LaCuQy [4, 5] provided evidence of giant anisotropy in the-plane (see
table 1). By referring to the ‘giant anisotropy’ of the elastic moduli ofCa0y, we mean
that the anisotropy of the elastic properties is much more pronounced than the anisotropy of
the structural parameters. In fact, the structural anisottepy b)/(a + b) in the xz-plane
is equal to 0.8% [6]d, b are lattice constants) whereas the anisotropy of the elastic moduli
(c11 — c33)/(c11 + ¢33) is equal to 19.2% [3]. The origin of such a noticeable difference has
not been understood, and the prime objective of this work is to determine the microscopical
reasons for the giant anisotropy of the elastic moduli.

Another point regarding which there are some problems with interpretation of exp-
erimental data is the behaviour of the elastic moduli of boQLeD, and La_ . Me, CuOy near
the tetragonal—orthorhombic structural phase transition (SPT). In particular, the temperature
dependences of several elastic moduli measured experimentally (see below) show their
softening, but up to now there has been no complete theoretical explanation for this effect. In
view of this, it seems to be useful to study the pressure dependence of the elastic moduli near
the tetragonal—-orthorhombic SPT—the more so because there are no experimental data on this
point.

T Author to whom any correspondence should be addressed.
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Table 1. Elastic moduli of LaCuQy (GPa).

A g Ay g gy s chg
This work 285 106 137 355 115 165 94 125 79
Experimental (at 44 K) [1] 169 71 100 200 73 167 71 104 66
Experimental (at300K)[2] 175 90 90 265 98 173 66 99 67
Experimental (at 77 K) [3] 230 102 98 276 92 156 75 102 64
Calculation [4] 369 140 65 380 129 199 128 131 131
Calculation [5] 340 120 57 392 123 210 125 117 72

2. The model

The equilibrium structural parameters for a crystal under hydrostatic preBszae be found
as a result of the minimization of the enthalfly= E + PV (V is the unit-cell volume). The
crystal energyE is presented in the form of the sum of lattice and Jahn—Teller contributions:

E = Ejg + Ej7. 1)

Theions C4" have degenerate (quasi-degenerate) ground states; therefore itis necessary to take
into account the interaction of these ions with low-symmetry local lattice distortions (the Jahn—
Teller effect). The method of including the multi-body Jahn-Teller contribution to the energy
and dynamical matrix of the crystal has been developed in our previous papers [7,8]. Note that
the Jahn-Teller energy contribution plays a very importantrole in the crystal structure formation
of K,CuR, [9] which has the same layered perovskite structure a€u@y, discussed in this
work. The Jahn-Teller energy contribution was also found to be important for the correct
simulation of the structure and lattice dynamics ofCaQ, [10] and this term determined
the difference in physical properties betweenCaO, and LaNiO4 [11]. We think that
taking into account the multi-body Jahn—Teller contribution to the crystal energy,GuG@y
is preferable from the physical point of view to describing the Jahn—Teller effect by including
the anisotropic Ctf—0%~ pair potential (see, for example, [12]) or by considering the scaled
CW?*—0O? pair potential involving apical oxygen (see [5])t.

Within the framework of the pair potential approximation and the shell model, the lattice
energy can be expressed as follows:

1 1 L2
ElatZE;‘/i.j+§lei|sl )
i#]
where the index numbers all the ions in the unit cell, indgxaumbers all the crystal iong;

is the core—shell force constant, aids the %’-ion shell displacement relative to its core. For
the interionic pair potentiaV; ;, we use the expression

XiX; ¢ XY; Y;Y;
‘/ij:l]+ 4 Ll A ilj

r I7ij =5 | +5s;0 (7 — s +5;])

+Cij exp(—Dyj[Fij — 5 +5;1) — Aij /Iy — S + 5%+ £ (r) 3)
with X;, Y; are the charges of ari-ion core and shell respectivelg( = X; +Y;), andr = |F;;|
is the distance between the ion cores. The term

fij(r) = —Aij exp(—=Bj;r)/r “

T In [4] the calculations of the structural and elastic properties efCu&, were performed without making any
Jahn-Teller corrections.
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describes the short-range electrostatic screening of the overlapping electron shells. The values
of all of the constants (i.&C;;, D;;, Aij, ki, A;j, andB;;) needed to simulate L&uUO, as well
as the methods used to determine them are given in our previous paper [10], devoted to the
calculation of the structural properties ofdGuQO, under pressure.

We approximate the multi-body Jahn—Teller contribution to the crystal energy as in [13]
by the sum of expressions for the lower branches of £el@ster adiabatic potentials:

Eyr=—> |V.|(Q}+0)"? (5)
k
where the index numbers all of the copperionsin the unit cell and the symmetrized coordinates
Qy, Q. characterize thegaistortion of the oxide octahedra around the copper ions (for more
details, see [10]). Evaluation of the linear Jahn—Teller coupling con$tafdr the CuQ
cluster with the distance R(Cu3@ 0.21 nm (the average Cu—O distance inCa0y) with
the aid of the method of [14] givelg, = —2.5 nN.

As soon as the equilibrium crystal structure at constant pressure has been determined,
the elastic properties of a crystal may be calculated using the second derivatives of the crystal
energyE, equation (1), with respect to the lattice deformations and the corresponding sublattice
internal displacements. This means that when a lattice deformation is applied, the value of
the crystal energ¥ is found as a result of minimization d with respect to all symmetry-
permitted sublattice internal displacements.

3. Results and discussion

Before proceeding to the results obtained let us discuss the point of which coordinate systems
are used. Presenting the elastic moduli, we use two different Cartesian systems of coordinates:
‘orthorhombic’ (see figure 1(a)) and ‘tetragonal’ (see figure 1(b)). The ‘orthorhombic’
coordinate system is preferable for determining the elastic moduli g€u@, which is in

the orthorhombic phase (space grouﬁ)D The ‘tetragonal’ coordinate system is useful for
describing the tetragonal—orthorhombic SPT (see below). Throughout the text, for elastic
moduli determined in the ‘orthorhombic’ coordinate system we use superscript r (for example,
in c},), and for elastic moduli determined in the ‘tetragonal’ coordinate system we use
superscript t (for example, i ,).

Figure 1. Cartesian coordinate systems used for determining the elastic modukGtiCs.
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3.1. Microscopical reasons for the giant anisotropy of the elastic moduli in thglane

The calculated elastic moduli of kL&uQ, as well as the available experimental data and the
results of the previous theoretical calculations are collected in table 1.

First of all, the noticeable differences between the experimentally measured elastic moduli
presented in [1, 2] and in [3] are worth emphasizing. We are inclined to agree with &l
that such a discrepancy in the experimental results is explained by the fact that in [3] an
especially untwinned single crystal of 4@u0, was used for the measurements. On the other
hand, in [1,2] twinned crystals of LEuUO, were evidently considered. So it becomes obvious
that the calculation results should be compared with the experimental data given in [3], since
within the framework of the theoretical models used in our work and in [4, 5] only untwinned
crystals were considered. One can see from table 1 that our calculated elastic moduli are in
good agreement with the experimental ones, although our calculations predict harder elastic
properties of LaCuQ, than follow from the experiment. It should also be noted that our
calculations describe the experimental results better than previously reported calculations [4,5].
But we would like to emphasize the fact that the results of our calculations as well as previously
reported calculations [4,5] have reproduced correctly the main peculiarity of the elastic moduli
of La,CuO,—their giant anisotropy in thez-plane. Since in [4] the Jahn—Teller correction to
the crystal energy was not taken into consideration while, on the other hand, in [5] and in the
present study the Jahn—Teller correction was considered (although in a different way), we have
grounds for saying that the Jahn—Teller effect does not play a crucial role in the explanation of
the peculiarities of the elastic properties,CaiO,.

The mostinteresting result obtained byétiklis the giant anisotropy of the elastic moduli
inthexz-plane. This anisotropy can be expressed quantitativety-agcj, — c43)/ (¢} +c33).

From [3],0 = 19.2%, and our calculations give = 26.5%. It is interesting to note again
that the anisotropy of the elastic properties intheplane is large enough, although the lattice
distortions of LaCuQ, in the orthorhombic phase are rather small (see above).

In order to clarify the point of what microscopical reasons are responsible for such a
large anisotropy in thez-plane, we have carried out a series of elastic modulus calculations
without taking into account the internal displacements of some sublattices6tiC3. For
La,CuQy one can distinguish three sublattices as being of importance from the point of
view of elastic modulus calculations: the sublattice of'Lins (Layy), the sublattice of
0% ions within La0, layers (@), and the sublattice of © ions within CuQ layers
(033, The internal displacements of the Lsublattice are not taken into account since
they belong to odd irreducible representations of the space grgtipiille the deformation
tensor components belong to even irreducible representations of the same group. Since in
our work the main attention is focused on the elastic modyliand ci;, it should be said
that the internal displacements of all three sublattices mentioned above influence the values
of ¢j,, andcy;, as among all of the symmetry-permitted ion displacements of these sublattices
there are ones which belong to thg Aepresentation, to which the lattice deformatiens
ande_, also belong. The results obtained are collected in table 2. One can see that the neglect
of any internal displacements leads to drastic changes in the elastic propertiesCoflLa
and the elastic modulus anisotropyis changed completely. On the basis of this result, we
conclude that the microscopical reason for the large anisotropy of the elastic moduli lies in
the internal displacements of the sublattices accompanying the crystal deformations. It can
be seen from series 2, 3, and 4 that among the three sublattices@fiQathe crucial role
as regards the anisotropy is played b3 Furthermore, one can conclude from series 5,

6, and 7 that the main contribution to the elastic anisotropy is associated with the correlated
internal displacements ofi@ﬁx and La,, From table 2 it becomes obvious that the internal
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Table 2. The elastic modulus anisotropy = (c}; — c§3)/(c]; + c55) and the elastic moduli,

andch; (GPa) for LaCuQy.
Series ¢ 2b 3¢ 4d 5e 6f 79 gh
o —9.3% —3.9% 8.1% —9.5% 19.7% —3.0% 16.1% 26.5%

i 292 289 288 289 285 289 287 285
chg 351 312 244 350 191 307 207 165

a Without taking into account any internal displacements.

b Taking into account only L&y internal displacements.

¢ Taking into account only 8 internal displacements.

d Taking into account only gzga'internal displacements.

® Taking into account La, and 7 ‘internal displacements.

f Taking into account Layand (3¥internal displacements.

9 Taking into account & and @2linternal displacements.

h Taking into account internal displacements for all sublattices.

displacements of the sublattices have a much more profound influengg thian onc?,.

Thus, the large difference betwee]} andc;; measured experimentally and calculated
within the framework of the pair potential approximation and shell model is evidently a
consequence of the strong anisotropic correlation between the lattice deformaticarsd
e,, and the accompanying internal displacements of the sublattices within §@ layers.
Onthe other hand, Cuayers do not significantly influence the elastic properties gL,
in thexz-plane.

3.2. The influence of pressure on elastic moduli

We have also carried out an investigation of the influence of hydrostatic pressure (up to 10 GPa)
on the elastic moduli of L&CuQ,. The hydrostatic pressure was experimentally observed to
have a profound influence on the structural properties €&y, decreasing tilt angles of

the CuQ@ octahedra and the difference between the lattice constaantslb [6]. The critical
pressureéPsprat which the SPT from the orthorhombic phase (space gréﬁl}jﬁ)the tetragonal

phase (space group;f) must have taken place has not been achieved experimentally at low
temperatures. According to our calculations [10], the value of the critical pre®spfdor
La,CuQy atT = 0 Kis equal to 5 GPa.

The calculated pressure dependences of the elastic moduli,GuiCa (determined in
the ‘orthorhombic’ coordinate system) are shown in figure 2. According to the simulation
results, most of the elastic moduliefs, ¢, ¢i3, c5o c5s, andcgg—harden upon the pressure
increase. But several modulies;, 55 (WhenP > 3.2 GPa), and;, (whenP > 3.8 GPa)—
soften upon pressure increase. In our opinion, the softening of these moduli can be explained
by the correlation between the lattice deformations and those internal displacements of the
La®* sublattice and & sublattice which soften near the SPT. The crucial importance of the
internal sublattice displacements for the softening of the elastic moduli should be emphasized
again, since our calculations performed without taking into account the internal sublattice
displacements predict only a very small softeningcf and no sign of softening foe’,
andcy,.

The SPT observed in L&uUQ, is generally understood as being a result of freezing of the
zone-edge phonon mode corresponding to the almost rigid tilting of thg Get@hedra. The
Landau theory of phase transitions is usually used to explain this transition, with the tilt angles
of the octahedra as the order parameters. In order to study the behaviour of the elastic moduli
near the SPT, the Landau free energy must be generalized to include the elastic energy for a
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tetragonal phase and the proper coupling of the strain and order parameter [15]. Summarizing
the results given in [15] and taking into account the difference between the coordinate systems
used in [15] and in our work, it should be said that the behaviour of the elastic moduli near the
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Figure 2. The pressure dependences of the elastic moduli €Lé&y calculated in the ‘ortho-

240

180

120

/3
wW
w

360 7\ T 1T ‘ T T 17T ‘ T T 17T ‘ T T 17T ‘ T 17T
- C
300 /

60

o

208

2 4 6 8

Pressure, GPa

=
o

192

176

160

144

128 L

13

2 4 6 8

Pressure, GPa

=
o

100 -

95

90

85

80

75 L

FC

44

0

2 4 6 8

Pressure, GPa

=
o

rhombic’ coordinate system (see the text).

G GPa

¢, GPa

oF GPa

144

136

128

120

112

104 C

456

432

408

384

360

336

180

168

156

144

132

120

2 4 6 8

Pressure, GPa

=
o

L1 ‘ L1 ‘ L1 ‘ L1 ‘ L1
0 2 4 6 8 10
Pressure, GPa
7\ 1T ‘ T T ‘ T T ‘ T T ‘ 1T \7
7\ Ll ‘ L1l ‘ L1l ‘ L1l ‘ Ll \7
0 2 4 6 8 10

Pressure, GPa

SPT must be as followss),, cL;, andcg, are unaffected by the transition, whitg,, ¢}, i3,

5y, Cha, €53 Must show a steplike jump. The results of our calculations given in figure 2 and
in table 3 are seen to follow the prediction of the Landau theory. But it should be noticed that
near the SPT (in the orthorhombic phase) the errors in the structural parameter calculations

become large, leading to the large errors in the calculated elastic moduli.
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Table 3. Differences between the elastic moduli ofICGuO; in the tetragonal phasé’(> Pspr)
and in the orthorhombic phas® (< Pspt) near the structural phase transitialicf{; = ¢;; (P >
Psp1) — ¢ij (P < Psp1) (GPa).

r r r r r r r r r
Acyy  Acgy Az Acyy  Acyg Acgg Acyy Acgs Acgg

2 1 18 1 8 225 0 0 0

As mentioned in the introduction, some peculiarities of the temperature dependence of
elastic moduli near the SPT are measured experimentally. A striking anomalous decrease of
Young's modulus near the SPT was observed fos_L.8r,CuQ, [16,17]. An analogous
decrease was measured ﬁgg for Lay ggSro.14CuQ, [18]. A careful study of the elastic
moduli [2] (except! ) for La,CuO, and La-_, Sr, CuO, showed that! ;, ¢}, andcfg decreased
as Y(T — Tspy for T > Tspr, 55 Showed a steplike drop, ang, was unaffected by the
transition ((sptis the temperature at which the temperature-induced SPT takes place).

Afew theoretical models have been suggested to explain the elastic softening near the SPT.
Migliori etal[18] attempted to explain thgg-softening by order parameter fluctuations, butthe
source of the large temperature range (about 100 K) forgeoftening was not understood.
Sarracet al [2] pointed to the dopant-induced symmetry breaking as a possible cause for the
elastic softening, but within this model it was not possible to explain the observed softening
in stoichiometric LaCuQy. In order to suggest a model suitable for both stoichiometric and
non-stoichiometric LeCuQ,, Sarraoet al [2] speculated that the in-plane distortion of the
CuG; octahedra which is usually neglected might be significant enough to explain the elastic
properties. Kworet al[19] accounted for the elastic softening-hf by electronic redistribution
between the strain-split itinerant p bands and also between the strain-shifted energy pockets,
but they did not try to explain the elastic softeningbf andc,.

The behaviour of the elastic moduli of §@uQO, under pressure near the SPT has not
been measured yet, although it would be very useful to know whether the peculiarities of the
elastic modulus behaviour near the SPT mentioned above can be observed for a SPT induced
by the pressure or not. The calculated pressure dependences of the elastic mod@iuglla
(determined in the ‘tetragonal’ coordinate system) are shown in figure 3. The results obtained
are in good agreement with predictions of the Landau theory [15]. Only one modujys—is
unaffected by the phase transition, and other moduli must show discontinuities at the point of
the phase transition. According to the results obtained, we do not observe the softening of
¢}y, 55, andcis measured experimentally near the SPT induced by the temperature—although
we do predict the large steplike drop of these moduli (see figure 3) near the SPT induced
by the pressure. We are inclined to explain the disagreement between the experimental data
mentioned above and our predictions by the underlying difference between the mechanism of
the SPTs in LaCuQ, induced by temperature and induced by pressure. We do not believe
that the problem is that we have neglected the order parameter fluctuations near the phase
transition. Anyway, we think that the in-plane distortion of Guigtahedra, fully taken into
consideration in our calculations, cannot account for the elastic modulus softening as had been
suggested by Sarra al [2].

The experimentally revealed softening @f,; — c!,)/2 starting from about 50 K in
Lay 86Sr0.14CUOy [20] is also worth mentioning. Analogous behaviour(ef, — ¢},)/2 is
predicted by our calculations under pressure (see figure 3). Such behaviour of these elastic
moduli can be interpreted as a consequence of the structural instability of the orthorhombic
phase LaCuQ, and the possibility of the transition to the low-temperature tetragonal phase
(space group ﬁﬁ) observed experimentally in ka,Ba,CuQ, [21] and predicted from the
total-energy calculations [22].



1206 A E Nikiforov et al

450

420

390

1

c., GPa

360

330

300

140

133

126

G GPa

119

112

105

96

94

92

©" 90

88

86

0 2 4 6 8

Pressure, GPa

[y

0

13

0 2 4 6 8

Pressure, GPa

=

0

0 2 4 6 8

Pressure, GPa

=
o

1

c., GPa

C GPa

180

168

156

144

132

120C

456

432

408

384

360

336

7

66

55

44

33

22

(c,C,)/2

2

4 6

Pressure, GPa

8

=
o

L1 ‘ L1l ‘ L1l ‘ L1l ‘ L1l \7
0 2 4 6 8 10
Pressure, GPa
7\ 1T ‘ TT 1T ‘ TT 1T ‘ TTTT ‘ TTTT
I~ C 7
7\ L1l ‘ L1l ‘ L 1% ‘ L1l ‘ L1l \7
0 2 4 6 8 10

Pressure, GPa

Figure 3. The pressure dependences of the elastic moduligEuéy calculated in the ‘tetragonal’
coordinate system (see the text).

4. Conclusions

In summary, we have presented a determination of the complete set of elastic moduli of
La,CuQ, within the framework of the pair potential approximation and the shell model
including the Jahn—Teller contribution to the crystal energy. We have shown that the internal
displacements of the sublattices within the Oalayers accompanying the lattice deformations
have a profound influence on the elastic properties g€y, leading to the giant anisotropy

of the elastic moduli in the orthorhombic phase region and the softening of some elastic moduli
near the tetragonal-orthorhombic structural phase transition.
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