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Abstract. Within the framework of the pair potential approximation and the shell model including
the Jahn–Teller contribution to the crystal energy we have studied the elastic properties of La2CuO4.
The strong anisotropic correlation between the lattice deformationsexx andezz and the internal
displacements of the accompanying sublattices within the La2O2 layers are shown to be responsible
for the giant anisotropy of the elastic moduli in thexz-plane. We have predicted the softening of
several elastic moduli in the orthorhombic phase region near the pressure-induced structural phase
transition. But we have not observed the softening ofc11, c12, andc66 in the tetragonal phase region
that was measured near the temperature-induced structural phase transition.

1. Introduction

The elastic properties of La2−xMexCuO4 (Me= Sr,Ba) as well as those of the parent material
La2CuO4 have attracted considerable interest during the last few years. Nevertheless, until now
there have been some contradictions in the available experimental and theoretical results. The
experimental data obtained in [1,2] for a single crystal of La2CuO4 showed only a very small
anisotropy of the elastic properties in thexz-plane (see table 1). On the other hand, the elastic
moduli measured in [3] for a single crystal of La2CuO4 as well as the results of theoretical
calculations for La2CuO4 [4, 5] provided evidence of giant anisotropy in thexz-plane (see
table 1). By referring to the ‘giant anisotropy’ of the elastic moduli of La2CuO4, we mean
that the anisotropy of the elastic properties is much more pronounced than the anisotropy of
the structural parameters. In fact, the structural anisotropy(a − b)/(a + b) in thexz-plane
is equal to 0.8% [6] (a, b are lattice constants) whereas the anisotropy of the elastic moduli
(c11− c33)/(c11 + c33) is equal to 19.2% [3]. The origin of such a noticeable difference has
not been understood, and the prime objective of this work is to determine the microscopical
reasons for the giant anisotropy of the elastic moduli.

Another point regarding which there are some problems with interpretation of exp-
erimental data is the behaviour of the elastic moduli of both La2CuO4 and La2−xMexCuO4 near
the tetragonal–orthorhombic structural phase transition (SPT). In particular, the temperature
dependences of several elastic moduli measured experimentally (see below) show their
softening, but up to now there has been no complete theoretical explanation for this effect. In
view of this, it seems to be useful to study the pressure dependence of the elastic moduli near
the tetragonal–orthorhombic SPT—the more so because there are no experimental data on this
point.

† Author to whom any correspondence should be addressed.
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Table 1. Elastic moduli of La2CuO4 (GPa).

cr
11 cr

12 cr
13 cr

22 cr
23 cr

33 cr
44 cr

55 cr
66

This work 285 106 137 355 115 165 94 125 79
Experimental (at 44 K) [1] 169 71 100 200 73 167 71 104 66
Experimental (at 300 K) [2] 175 90 90 265 98 173 66 99 67
Experimental (at 77 K) [3] 230 102 98 276 92 156 75 102 64
Calculation [4] 369 140 65 380 129 199 128 131 131
Calculation [5] 340 120 57 392 123 210 125 117 72

2. The model

The equilibrium structural parameters for a crystal under hydrostatic pressureP can be found
as a result of the minimization of the enthalpyH = E + PV (V is the unit-cell volume). The
crystal energyE is presented in the form of the sum of lattice and Jahn–Teller contributions:

E = Elat +EJT. (1)

The ions Cu2+ have degenerate (quasi-degenerate) ground states; therefore it is necessary to take
into account the interaction of these ions with low-symmetry local lattice distortions (the Jahn–
Teller effect). The method of including the multi-body Jahn–Teller contribution to the energy
and dynamical matrix of the crystal has been developed in our previous papers [7,8]. Note that
the Jahn–Teller energy contribution plays a very important role in the crystal structure formation
of K2CuF4 [9] which has the same layered perovskite structure as La2CuO4, discussed in this
work. The Jahn–Teller energy contribution was also found to be important for the correct
simulation of the structure and lattice dynamics of La2CuO4 [10] and this term determined
the difference in physical properties between La2CuO4 and La2NiO4 [11]. We think that
taking into account the multi-body Jahn–Teller contribution to the crystal energy of La2CuO4

is preferable from the physical point of view to describing the Jahn–Teller effect by including
the anisotropic Cu2+–O2− pair potential (see, for example, [12]) or by considering the scaled
Cu2+–O2− pair potential involving apical oxygen (see [5])†.

Within the framework of the pair potential approximation and the shell model, the lattice
energy can be expressed as follows:

Elat = 1

2

∑
i,j
i 6=j

Vi,j +
1

2

∑
i

ki |Es|2 (2)

where the indexi numbers all the ions in the unit cell, indexj numbers all the crystal ions,ki
is the core–shell force constant, andEsi is the ‘i’-ion shell displacement relative to its core. For
the interionic pair potentialVi,j , we use the expression

Vij = XiXj

r
+

YiXj

|Erij − Esi | +
XiYj

|Erij + Esj | +
YiYj

(|Erij − Esi + Esj |)
+ Cij exp(−Dij |Erij − Esi + Esj |)− λij /|Erij − Esi + Esj |6 + fij (r) (3)

withXi , Yi are the charges of an ‘i’-ion core and shell respectively (Zi = Xi +Yi), andr = |Erij |
is the distance between the ion cores. The term

fij (r) = −Aij exp(−Bij r)/r (4)

† In [4] the calculations of the structural and elastic properties of La2CuO4 were performed without making any
Jahn–Teller corrections.
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describes the short-range electrostatic screening of the overlapping electron shells. The values
of all of the constants (i.e.Cij ,Dij , λij , ki ,Aij , andBij ) needed to simulate La2CuO4 as well
as the methods used to determine them are given in our previous paper [10], devoted to the
calculation of the structural properties of La2CuO4 under pressure.

We approximate the multi-body Jahn–Teller contribution to the crystal energy as in [13]
by the sum of expressions for the lower branches of CuO6 cluster adiabatic potentials:

EJT = −
∑
k

|Ve|(Q2
θ +Q2

ε)
1/2 (5)

where the indexk numbers all of the copper ions in the unit cell and the symmetrized coordinates
Qθ ,Qε characterize the eg distortion of the oxide octahedra around the copper ions (for more
details, see [10]). Evaluation of the linear Jahn–Teller coupling constantVe for the CuO6

cluster with the distance R(Cu–O) = 0.21 nm (the average Cu–O distance in La2CuO4) with
the aid of the method of [14] givesVe = −2.5 nN.

As soon as the equilibrium crystal structure at constant pressure has been determined,
the elastic properties of a crystal may be calculated using the second derivatives of the crystal
energyE, equation (1), with respect to the lattice deformations and the corresponding sublattice
internal displacements. This means that when a lattice deformation is applied, the value of
the crystal energyE is found as a result of minimization ofE with respect to all symmetry-
permitted sublattice internal displacements.

3. Results and discussion

Before proceeding to the results obtained let us discuss the point of which coordinate systems
are used. Presenting the elastic moduli, we use two different Cartesian systems of coordinates:
‘orthorhombic’ (see figure 1(a)) and ‘tetragonal’ (see figure 1(b)). The ‘orthorhombic’
coordinate system is preferable for determining the elastic moduli of La2CuO4 which is in
the orthorhombic phase (space group D18

2h). The ‘tetragonal’ coordinate system is useful for
describing the tetragonal–orthorhombic SPT (see below). Throughout the text, for elastic
moduli determined in the ‘orthorhombic’ coordinate system we use superscript r (for example,
in cr

12), and for elastic moduli determined in the ‘tetragonal’ coordinate system we use
superscript t (for example, inct

12).

Figure 1. Cartesian coordinate systems used for determining the elastic moduli of La2CuO4.
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3.1. Microscopical reasons for the giant anisotropy of the elastic moduli in thexz-plane

The calculated elastic moduli of La2CuO4 as well as the available experimental data and the
results of the previous theoretical calculations are collected in table 1.

First of all, the noticeable differences between the experimentally measured elastic moduli
presented in [1, 2] and in [3] are worth emphasizing. We are inclined to agree with Filet al
that such a discrepancy in the experimental results is explained by the fact that in [3] an
especially untwinned single crystal of La2CuO4 was used for the measurements. On the other
hand, in [1,2] twinned crystals of La2CuO4 were evidently considered. So it becomes obvious
that the calculation results should be compared with the experimental data given in [3], since
within the framework of the theoretical models used in our work and in [4,5] only untwinned
crystals were considered. One can see from table 1 that our calculated elastic moduli are in
good agreement with the experimental ones, although our calculations predict harder elastic
properties of La2CuO4 than follow from the experiment. It should also be noted that our
calculations describe the experimental results better than previously reported calculations [4,5].
But we would like to emphasize the fact that the results of our calculations as well as previously
reported calculations [4,5] have reproduced correctly the main peculiarity of the elastic moduli
of La2CuO4—their giant anisotropy in thexz-plane. Since in [4] the Jahn–Teller correction to
the crystal energy was not taken into consideration while, on the other hand, in [5] and in the
present study the Jahn–Teller correction was considered (although in a different way), we have
grounds for saying that the Jahn–Teller effect does not play a crucial role in the explanation of
the peculiarities of the elastic properties La2CuO4.

The most interesting result obtained by Filet al is the giant anisotropy of the elastic moduli
in thexz-plane. This anisotropy can be expressed quantitatively asσ = (cr

11−cr
33)/(c

r
11+cr

33).
From [3], σ = 19.2%, and our calculations giveσ = 26.5%. It is interesting to note again
that the anisotropy of the elastic properties in thexz-plane is large enough, although the lattice
distortions of La2CuO4 in the orthorhombic phase are rather small (see above).

In order to clarify the point of what microscopical reasons are responsible for such a
large anisotropy in thexz-plane, we have carried out a series of elastic modulus calculations
without taking into account the internal displacements of some sublattices of La2CuO4. For
La2CuO4 one can distinguish three sublattices as being of importance from the point of
view of elastic modulus calculations: the sublattice of La3+ ions (Lasub), the sublattice of
O2− ions within La2O2 layers (Oapex

sub ), and the sublattice of O2− ions within CuO2 layers
(Obasal

sub ). The internal displacements of the Cu2+ sublattice are not taken into account since
they belong to odd irreducible representations of the space group D18

2h while the deformation
tensor components belong to even irreducible representations of the same group. Since in
our work the main attention is focused on the elastic modulicr

11 andcr
33, it should be said

that the internal displacements of all three sublattices mentioned above influence the values
of cr

11, andcr
33, as among all of the symmetry-permitted ion displacements of these sublattices

there are ones which belong to the Ag representation, to which the lattice deformationsexx
andezz also belong. The results obtained are collected in table 2. One can see that the neglect
of any internal displacements leads to drastic changes in the elastic properties of La2CuO4,
and the elastic modulus anisotropyσ is changed completely. On the basis of this result, we
conclude that the microscopical reason for the large anisotropy of the elastic moduli lies in
the internal displacements of the sublattices accompanying the crystal deformations. It can
be seen from series 2, 3, and 4 that among the three sublattices of La2CuO4 the crucial role
as regards the anisotropy is played by Oapex

sub . Furthermore, one can conclude from series 5,
6, and 7 that the main contribution to the elastic anisotropy is associated with the correlated
internal displacements of Oapex

sub and Lasub. From table 2 it becomes obvious that the internal
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Table 2. The elastic modulus anisotropyσ = (cr
11− cr

33)/(c
r
11 + cr

33) and the elastic modulicr
11

andcr
33 (GPa) for La2CuO4.

Series 1a 2b 3c 4d 5e 6f 7g 8h

σ −9.3% −3.9% 8.1% −9.5% 19.7% −3.0% 16.1% 26.5%
cr

11 292 289 288 289 285 289 287 285
cr

33 351 312 244 350 191 307 207 165

a Without taking into account any internal displacements.
b Taking into account only Lasub internal displacements.
c Taking into account only Oapex

sub internal displacements.
d Taking into account only Obasal

sub internal displacements.
e Taking into account Lasub and Oapex

sub internal displacements.
f Taking into account Lasub and Obasal

sub internal displacements.
g Taking into account Oapex

sub and Obasal
sub internal displacements.

h Taking into account internal displacements for all sublattices.

displacements of the sublattices have a much more profound influence oncr
33 than oncr

11.
Thus, the large difference betweencr

11 andcr
33 measured experimentally and calculated

within the framework of the pair potential approximation and shell model is evidently a
consequence of the strong anisotropic correlation between the lattice deformationsexx and
ezz and the accompanying internal displacements of the sublattices within the La2O2 layers.
On the other hand, CuO2 layers do not significantly influence the elastic properties of La2CuO4

in thexz-plane.

3.2. The influence of pressure on elastic moduli

We have also carried out an investigation of the influence of hydrostatic pressure (up to 10 GPa)
on the elastic moduli of La2CuO4. The hydrostatic pressure was experimentally observed to
have a profound influence on the structural properties of La2CuO4, decreasing tilt angles of
the CuO6 octahedra and the difference between the lattice constantsa andb [6]. The critical
pressurePSPTat which the SPT from the orthorhombic phase (space group D18

2h) to the tetragonal
phase (space group D17

4h) must have taken place has not been achieved experimentally at low
temperatures. According to our calculations [10], the value of the critical pressurePSPT for
La2CuO4 atT = 0 K is equal to 5 GPa.

The calculated pressure dependences of the elastic moduli of La2CuO4 (determined in
the ‘orthorhombic’ coordinate system) are shown in figure 2. According to the simulation
results, most of the elastic moduli—cr

11, c
r
12, c

r
13, c

r
22, c

r
55, andcr

66—harden upon the pressure
increase. But several moduli—cr

33, c
r
23 (whenP > 3.2 GPa), andcr

44 (whenP > 3.8 GPa)—
soften upon pressure increase. In our opinion, the softening of these moduli can be explained
by the correlation between the lattice deformations and those internal displacements of the
La3+ sublattice and Oapexsublattice which soften near the SPT. The crucial importance of the
internal sublattice displacements for the softening of the elastic moduli should be emphasized
again, since our calculations performed without taking into account the internal sublattice
displacements predict only a very small softening ofcr

33 and no sign of softening forcr
23

andcr
44.

The SPT observed in La2CuO4 is generally understood as being a result of freezing of the
zone-edge phonon mode corresponding to the almost rigid tilting of the CuO6 octahedra. The
Landau theory of phase transitions is usually used to explain this transition, with the tilt angles
of the octahedra as the order parameters. In order to study the behaviour of the elastic moduli
near the SPT, the Landau free energy must be generalized to include the elastic energy for a
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Figure 2. The pressure dependences of the elastic moduli of La2CuO4 calculated in the ‘ortho-
rhombic’ coordinate system (see the text).

tetragonal phase and the proper coupling of the strain and order parameter [15]. Summarizing
the results given in [15] and taking into account the difference between the coordinate systems
used in [15] and in our work, it should be said that the behaviour of the elastic moduli near the
SPT must be as follows:cr

44, c
r
55, andcr

66 are unaffected by the transition, whilecr
11, c

r
12, c

r
13,

cr
22, c

r
23, c

r
33 must show a steplike jump. The results of our calculations given in figure 2 and

in table 3 are seen to follow the prediction of the Landau theory. But it should be noticed that
near the SPT (in the orthorhombic phase) the errors in the structural parameter calculations
become large, leading to the large errors in the calculated elastic moduli.
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Table 3. Differences between the elastic moduli of La2CuO4 in the tetragonal phase (P > PSPT)
and in the orthorhombic phase (P < PSPT) near the structural phase transition (1cij = cij (P >

PSPT)− cij (P < PSPT)) (GPa).

1cr
11 1cr

12 1cr
13 1cr

22 1cr
23 1cr

33 1cr
44 1cr

55 1cr
66

2 1 18 1 8 225 0 0 0

As mentioned in the introduction, some peculiarities of the temperature dependence of
elastic moduli near the SPT are measured experimentally. A striking anomalous decrease of
Young’s modulus near the SPT was observed for La2−xSrxCuO4 [16, 17]. An analogous
decrease was measured forct

66 for La1.86Sr0.14CuO4 [18]. A careful study of the elastic
moduli [2] (exceptct

13) for La2CuO4 and La2−xSrxCuO4 showed thatct
11, c

t
12, andct

66 decreased
as 1/(T − TSPT) for T > TSPT, ct

33 showed a steplike drop, andct
44 was unaffected by the

transition (TSPT is the temperature at which the temperature-induced SPT takes place).
A few theoretical models have been suggested to explain the elastic softening near the SPT.

Migliori et al[18] attempted to explain thect
66-softening by order parameter fluctuations, but the

source of the large temperature range (about 100 K) for thect
66-softening was not understood.

Sarraoet al [2] pointed to the dopant-induced symmetry breaking as a possible cause for the
elastic softening, but within this model it was not possible to explain the observed softening
in stoichiometric La2CuO4. In order to suggest a model suitable for both stoichiometric and
non-stoichiometric La2CuO4, Sarraoet al [2] speculated that the in-plane distortion of the
CuO6 octahedra which is usually neglected might be significant enough to explain the elastic
properties. Kwonet al[19] accounted for the elastic softening ofct

66 by electronic redistribution
between the strain-split itinerant p bands and also between the strain-shifted energy pockets,
but they did not try to explain the elastic softening ofct

11 andct
12.

The behaviour of the elastic moduli of La2CuO4 under pressure near the SPT has not
been measured yet, although it would be very useful to know whether the peculiarities of the
elastic modulus behaviour near the SPT mentioned above can be observed for a SPT induced
by the pressure or not. The calculated pressure dependences of the elastic moduli of La2CuO4

(determined in the ‘tetragonal’ coordinate system) are shown in figure 3. The results obtained
are in good agreement with predictions of the Landau theory [15]. Only one modulus—ct

44—is
unaffected by the phase transition, and other moduli must show discontinuities at the point of
the phase transition. According to the results obtained, we do not observe the softening of
ct

11, c
t
12, andct

66 measured experimentally near the SPT induced by the temperature—although
we do predict the large steplike drop of these moduli (see figure 3) near the SPT induced
by the pressure. We are inclined to explain the disagreement between the experimental data
mentioned above and our predictions by the underlying difference between the mechanism of
the SPTs in La2CuO4 induced by temperature and induced by pressure. We do not believe
that the problem is that we have neglected the order parameter fluctuations near the phase
transition. Anyway, we think that the in-plane distortion of CuO6 octahedra, fully taken into
consideration in our calculations, cannot account for the elastic modulus softening as had been
suggested by Sarraoet al [2].

The experimentally revealed softening of(ct
11 − ct

12)/2 starting from about 50 K in
La1.86Sr0.14CuO4 [20] is also worth mentioning. Analogous behaviour of(ct

11 − ct
12)/2 is

predicted by our calculations under pressure (see figure 3). Such behaviour of these elastic
moduli can be interpreted as a consequence of the structural instability of the orthorhombic
phase La2CuO4 and the possibility of the transition to the low-temperature tetragonal phase
(space group D16

4h) observed experimentally in La2−xBaxCuO4 [21] and predicted from the
total-energy calculations [22].
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Figure 3. The pressure dependences of the elastic moduli of La2CuO4 calculated in the ‘tetragonal’
coordinate system (see the text).

4. Conclusions

In summary, we have presented a determination of the complete set of elastic moduli of
La2CuO4 within the framework of the pair potential approximation and the shell model
including the Jahn–Teller contribution to the crystal energy. We have shown that the internal
displacements of the sublattices within the La2O2 layers accompanying the lattice deformations
have a profound influence on the elastic properties of La2CuO4, leading to the giant anisotropy
of the elastic moduli in the orthorhombic phase region and the softening of some elastic moduli
near the tetragonal–orthorhombic structural phase transition.
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